


     LOCATION OF VIDEONOTES IN THE TEXT   

(continued on the next page)

   Chapter   1      Compiling and Running a Java Program, p.  14  
 Using an IDE, p.  14  
 Your First Java Program, p.  28  

   Chapter   2      Displaying Console Output, p.  37  
 Declaring Variables, p.  44  
 Simple Math Expressions, p.  60  
 The Miles-per-Gallon Problem, p.  124  

   Chapter   3      Writing Classes and Creating Objects, p.  133  
 Initializing an Object with a Constructor, p.  155  
 The Personal Information Class Problem, p.  188  

   Chapter   4      The  if  Statement, p.  193  
 The  if-else  Statement, p.  202  
 The  if-else-if  Statement, p.  217  
 The Time Calculator Problem, p.  273  

   Chapter   5      The  while  Loop, p.  279  
 The Pennies for Pay Problem, p.  349  

   Chapter   6      Returning Objects from Methods, p.  389  
 Aggregation, p.  401  
 The  InventoryItem  Class Copy Constructor Problem, p.  442  

   Chapter   7      Accessing Array Elements in a Loop, p.  454  
 Passing an Array to a Method, p.  472  
 The Charge Account Validation Problem, p.  540  

   Chapter   8      The Sentence Capitalizer Problem, p.  599  

   Chapter   9      Inheritance, p.  605  
 Polymorphism, p.  646  
 The Employee and Production-worker Classes Problem, p.  675  

   Chapter   10      Handling Exceptions, p.  681  
 The Exception Project Problem, p.  737  

   Chapter   11      Creating a Simple GUI Application, p.  753  
 Handling Events, p.  763  
 The Monthly Sales Tax Problem, p.  836  

   Chapter   12      The  JList  Component, p.  842  
 The  JcomboBox  Component, p.  859  
 The Image Viewer Problem, p.  903  



LOCATION OF VIDEONOTES IN THE TEXT (continued)
  

   Chapter   13      Creating an Applet, p.  921  
 The House Applet Problem, p.  980  

   Chapter   14      Using Scene Builder to Create the Kilometer Converter GUI, p.  990  
 Learning More About the Main Application Class, p.  1002  
 Writing the Main Application Class For the Kilometer 
Converter GUI, p.  1003  
 Learning More About the Controller Class, p.  1005  
 Registering the Controller Class to the Application’s GUI, p.  1006  
 JavaFX RadioButtons, p.  1011  
 JavaFX CheckBoxes, p.  1019  
 The Retail Price Calculator Problem, p.  1034  

   Chapter   15      Reducing a Problem with Recursion, p.  1042  
 The Recursive Power Problem, p.  1065   



Java 
FIFTH ED IT ION

  STARTING OUT WITH 

 Java 
 Early Objects  

TM



This page intentionally left blank



   
Boston Columbus Indianapolis New York San Francisco Upper Saddle River 

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto 
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo     

Java 
FIFTH ED IT ION

  STARTING OUT WITH 

 Java 
 Early Objects 

   Tony Gaddis   
  Haywood Community College  

TM



   Library of Congress Cataloging-in-Publication      
Gaddis, Tony.
 Starting out with Java : early objects/Tony Gaddis.—Fifth edition.
  pages cm
 Includes index.
 ISBN-13: 978-0-13-377674-4
 ISBN-10: 0-13-377674-3
 1. Java (Computer program language) 2. Object-oriented programming
(Computer science)  I. Title.
  QA76.73.J38G325 2014
  005.13’3—dc23                                  2014000221

 10 9 8 7 6 5 4 3 2 1 

 ISBN-13: 978-0-13-377674-4 
 ISBN-10:     0-13-377674-3   

   Vice President and Editorial Director, ECS:  Marcia J. Horton  
 Acquisitions Editor: Matt Goldstein
  Program Manager:  Kayla Smith-Tarbox  
  Executive Marketing Manager:  Christy Lesko  
  Marketing Assistant:  Jon Bryant  
  Permissions Project Manager:  Karen Sanatar  
  Senior Managing Editor:  Scott Disanno  
  Production Project Manager:  Greg Dulles  
  Operations Specialist:  Linda Sager  
  Cover Designer: Karen Noferi 
  Cover Photo: © Natika/Fotolia 
  Composition: Aptara®, Inc. 
  Printer/Binder: Courier/Kendallville 
  Cover Printer: Moore Langen 
  Typeface: 10/12.5 Sabon LT Std   

   Copyright © 2015,  2011, 2008, 2005  Pearson Education, Inc., Upper Saddle River, NJ 07458 . 
All rights reserved. Manufactured in the United States of America. This publication is protected 
by Copyright and permissions should be obtained from the publisher prior to any prohibited 
reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materi-
als from this work, please submit a written request to Pearson Higher Education, Permissions 
Department, One Lake Street, Upper Saddle River, NJ 07458. 

 Many of the designations by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a 
trademark claim, the designations have been printed in initial caps or all caps. 

 The author and publisher of this book have used their best efforts in preparing this book. These 
efforts include the development, research, and testing of theories and programs to determine their 
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, 
with regard to these programs or the documentation contained in this book. The author and 
publisher shall not be liable in any event for incidental or consequential damages with, or arising 
out of, the furnishing, performance, or use of these programs. 

 Pearson Education Ltd.,  London  
 Pearson Education Singapore, Pte. Ltd 
 Pearson Education Canada, Inc. 
 Pearson Education—Japan 
 Pearson Education Australia PTY, Limited 

 Pearson Education North Asia, Ltd.,  Hong Kong  
 Pearson Educación de Mexico, S.A. de C.V. 
 Pearson Education Malaysia, Pte. Ltd. 
 Pearson Education, Inc.,  Upper Saddle River, 
 New Jersey   



  Contents in Brief 

     Preface   xv    

     Chapter 1  Introduction to Computers and Java   1   

    Chapter 2  Java Fundamentals   31   

    Chapter 3  A First Look at Classes and Objects   129   

    Chapter 4  Decision Structures   193   

    Chapter 5  Loops and Files   279   

    Chapter 6  A Second Look at Classes and Objects   357   

    Chapter 7  Arrays and the ArrayList Class   449   

    Chapter 8  Text Processing and Wrapper Classes   547   

    Chapter 9  Inheritance   605   

    Chapter 10  Exceptions and Advanced File I/O   681   

    Chapter 11  GUI Applications—Part 1   739   

    Chapter 12  GUI Applications—Part 2   841   

     Chapter 13  Applets and More   909   

    Chapter 14  Creating GUI Applications with JavaFX   983   

     Chapter 15  Recursion   1039   

     Chapter 16  Databases   1067    

     Appendix A  Getting Started with Alice 2   1163   

    Index   1189

 Credits 1205   

      Appendixes B–M  Available on the book’s online resource page      

      Case Studies 1–5  Available on the book’s online resource page        vii



This page intentionally left blank



ix

  Contents 

     Preface   xv

     Chapter 1  Introduction to Computers and Java     1  
    1.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1   
    1.2  Why Program? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1   
    1.3  Computer Systems: Hardware and Software   . . . . . . . . . . . . . . . . . . . . .  2   
    1.4  Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6   
    1.5  What Is a Program Made of?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9   
    1.6  The Programming Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16   
    1.7  Object-Oriented Programming   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19   
   Review Questions and Exercises    24   
   Programming Challenge    28    

    Chapter 2  Java Fundamentals     31  
    2.1  The Parts of a Java Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31   
    2.2   The  System.out.print  and  System.out.println  Methods, and the 

Java API   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37   
    2.3  Variables and Literals   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43   
    2.4  Primitive Data Types   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49   
    2.5  Arithmetic Operators   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60   
    2.6  Combined Assignment Operators   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69   
    2.7  Conversion between Primitive Data Types   . . . . . . . . . . . . . . . . . . . . . .  70   
    2.8  Creating Named Constants with  final    . . . . . . . . . . . . . . . . . . . . . . . .  74   
    2.9  The  String  Class   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76   
    2.10  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81   
    2.11  Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83   
    2.12  Programming Style   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87   
    2.13  Reading Keyboard Input   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89   
    2.14  Dialog Boxes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97   
    2.15  The  System.out.printf  Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104   
    2.16  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116   
   Review Questions and Exercises    118   
   Programming Challenges    123    



x Contents

    Chapter 3  A First Look at Classes and Objects     129  
    3.1  Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129   
    3.2  More about Passing Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149   
    3.3  Instance Fields and Methods   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152   
    3.4  Constructors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155   
    3.5  A  BankAccount  Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161   
    3.6  Classes, Variables, and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172   
    3.7  Packages and  import  Statements   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173   
    3.8   Focus on Object-Oriented Design: Finding the Classes 

and Their Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174   
    3.9  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183   
   Review Questions and Exercises    183   
   Programming Challenges    187    

    Chapter 4  Decision Structures     193  
    4.1  The if Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193   
    4.2  The  if-else  Statement   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202   
    4.3  The  Payroll  Class   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205   
    4.4  Nested  if  Statements   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209   
    4.5  The  if-else-if  Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217   
    4.6  Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222   
    4.7  Comparing  String  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230   
    4.8  More about Variable Declaration and Scope   . . . . . . . . . . . . . . . . . . .  235   
    4.9  The Conditional Operator (Optional) . . . . . . . . . . . . . . . . . . . . . . . . .  237   
    4.10  The  switch  Statement   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238   
    4.11  Formatting Numbers with the DecimalFormat Class   . . . . . . . . . . . . . .  248   
    4.12  Focus on Problem Solving: The SalesCommission Class . . . . . . . . . . . .  254   
    4.13  Generating Random Numbers with the Random Class . . . . . . . . . . . . .  261   
    4.14  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267   
   Review Questions and Exercises    268   
   Programming Challenges    273    

    Chapter 5  Loops and Files     279  
    5.1  The Increment and Decrement Operators   . . . . . . . . . . . . . . . . . . . . .  279   
    5.2  The  while  Loop   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283   
    5.3  Using the  while  Loop for Input Validation   . . . . . . . . . . . . . . . . . . . . .  290   
    5.4  The  do-while  Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293   
    5.5  The  for  Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296   
    5.6  Running Totals and Sentinel Values   . . . . . . . . . . . . . . . . . . . . . . . . . .  307   
    5.7  Nested Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312   
    5.8  The  break  and  continue  Statements . . . . . . . . . . . . . . . . . . . . . . . . . .  320   
    5.9  Deciding Which Loop to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320   
    5.10  Introduction to File Input and Output   . . . . . . . . . . . . . . . . . . . . . . . .  321   
    5.11  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341   



 Contents xi

   Review Questions and Exercises    342   
   Programming Challenges    348    

    Chapter 6  A Second Look at Classes and Objects     357  
    6.1  Static Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357   
    6.2  Overloaded Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364   
    6.3  Overloaded Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369   
    6.4  Passing Objects as Arguments to Methods . . . . . . . . . . . . . . . . . . . . .  376   
    6.5  Returning Objects from Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389   
    6.6  The  toString  Method   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392   
    6.7  Writing an  equals  Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396   
    6.8  Methods That Copy Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  398   
    6.9  Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401   
    6.10  The  this  Reference Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414   
    6.11  Inner Classes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  417   
    6.12  Enumerated Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420   
    6.13  Garbage Collection   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429   
    6.14  Focus on Object-Oriented Design: Class Collaboration   . . . . . . . . . . .  431   
    6.15  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  435   
   Review Questions and Exercises    436   
   Programming Challenges    441    

    Chapter 7  Arrays and the  ArrayList  Class     449  
    7.1  Introduction to Arrays   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  449   
    7.2  Processing Array Contents   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  460   
    7.3  Passing Arrays as Arguments to Methods . . . . . . . . . . . . . . . . . . . . . .  472   
    7.4  Some Useful Array Algorithms and Operations . . . . . . . . . . . . . . . . . .  476   
    7.5  Returning Arrays from Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  488   
    7.6   String  Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  490   
    7.7  Arrays of Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  494   
    7.8  The Sequential Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . .  498   
    7.9  The Selection Sort and the Binary Search Algorithms . . . . . . . . . . . . .  501   
    7.10  Two-Dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  509   
    7.11  Arrays with Three or More Dimensions   . . . . . . . . . . . . . . . . . . . . . . .  521   
    7.12  Command-Line Arguments and Variable-Length Argument Lists   . . . .  522   
    7.13  The  ArrayList  Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  526   
    7.14  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  534   
   Review Questions and Exercises    535   
   Programming Challenges    539    

    Chapter 8  Text Processing and Wrapper Classes     547  
    8.1  Introduction to Wrapper Classes   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  547   
    8.2  Character Testing and Conversion with the  Character  Class   . . . . . . .  548   
    8.3  More about  String  Objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  555   



xii Contents

    8.4  The  StringBuilder  Class   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  569   
    8.5  Tokenizing Strings   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578   
    8.6  Wrapper Classes for the Numeric Data Types . . . . . . . . . . . . . . . . . . .  587   
    8.7  Focus on Problem Solving: The  TestScoreReader  Class . . . . . . . . . . . .  591   
    8.8  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  595   
   Review Questions and Exercises    595   
   Programming Challenges    599    

    Chapter 9  Inheritance     605  
    9.1  What Is Inheritance?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  605   
    9.2  Calling the Superclass Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . .  616   
    9.3  Overriding Superclass Methods   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  624   
    9.4  Protected Members   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  632   
    9.5  Classes That Inherit from Subclasses . . . . . . . . . . . . . . . . . . . . . . . . . .  639   
    9.6  The  Object  Class   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  644   
    9.7  Polymorphism   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  646   
    9.8  Abstract Classes and Abstract Methods   . . . . . . . . . . . . . . . . . . . . . . .  651   
    9.9  Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  657   
    9.10  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  668   
   Review Questions and Exercises    669   
   Programming Challenges    675    

    Chapter 10  Exceptions and Advanced File I/O     681  
    10.1  Handling Exceptions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  681   
    10.2  Throwing Exceptions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  704   
    10.3   Advanced Topics: Binary Files, Random Access Files, and Object 

Serialization   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  712   
    10.4  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728   
   Review Questions and Exercises    729   
   Programming Challenges    735    

    Chapter 11  GUI Applications—Part 1     739  
    11.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  739   
    11.2  Dialog Boxes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  742   
    11.3  Creating Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  753   
    11.4  Layout Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  780   
    11.5  Radio Buttons and Check Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  797   
    11.6  Borders   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  810   
    11.7  Focus on Problem Solving: Extending the  JPanel  Class   . . . . . . . . . . .  812   
    11.8  Splash Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  826   
    11.9  Using Console Output to Debug a GUI Application . . . . . . . . . . . . . .  827   
    11.10  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  831   
   Review Questions and Exercises    831   
   Programming Challenges    836    



 Contents xiii

    Chapter 12  GUI Applications—Part 2     841  
    12.1  Read-Only Text Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  841   
    12.2  Lists   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  842   
    12.3  Combo Boxes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  859   
    12.4  Displaying Images in Labels and Buttons  . . . . . . . . . . . . . . . . . . . . . .  865   
    12.5  Mnemonics and Tool Tips   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  871   
    12.6  File Choosers and Color Choosers   . . . . . . . . . . . . . . . . . . . . . . . . . . .  873   
    12.7  Menus   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  877   
    12.8  More about Text Components: Text Areas and Fonts . . . . . . . . . . . . .  886   
    12.9  Sliders   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  891   
    12.10  Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  895   
    12.11  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  897   
   Review Questions and Exercises    898   
   Programming Challenges    903    

     Chapter 13  Applets and More     909  
     13.1  Introduction to Applets   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  909   
     13.2  A Brief Introduction to HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  911   
     13.3  Creating Applets with Swing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  921   
     13.4  Using AWT for Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  929   
     13.5  Drawing Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  934   
     13.6  Handling Mouse Events   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  954   
     13.7  Timer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  965   
     13.8  Playing Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  969   
     13.9  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  974   
    Review Questions and Exercises    974   
    Programming Challenges    980    

    Chapter 14  Creating GUI Applications with JavaFX     983  
    14.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  983   
    14.2  Scene Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  985   
    14.3  Using Scene Builder to Create JavaFX Applications . . . . . . . . . . . . . . .  987   
    14.4  Writing the Application Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1001   
    14.5  RadioButtons and CheckBoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1011   
    14.6  Displaying Images   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1025   
    14.7  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1030   
   Review Questions and Exercises    1030   
   Programming Challenges    1034    

     Chapter 15  Recursion     1039  
     15.1  Introduction to Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1039   
     15.2  Solving Problems with Recursion   . . . . . . . . . . . . . . . . . . . . . . . . . . .  1042   
     15.3  Examples of Recursive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1046   
     15.4  A Recursive Binary Search Method . . . . . . . . . . . . . . . . . . . . . . . . . .  1053   



xiv Contents

     15.5  The Towers of Hanoi   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1056   
     15.6  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060   
    Review Questions and Exercises    1061   
    Programming Challenges    1064    

    Chapter 16  Databases     1067  
    16.1  Introduction to Database Management Systems   . . . . . . . . . . . . . . .  1067   
    16.2  Tables, Rows, and Columns   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1073   
    16.3  Introduction to the SQL  SELECT  Statement . . . . . . . . . . . . . . . . . . . .  1077   
    16.4  Inserting Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1098   
    16.5  Updating and Deleting Existing Rows   . . . . . . . . . . . . . . . . . . . . . . .  1101   
    16.6  Creating and Deleting Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1110   
    16.7  Creating a New Database with JDBC . . . . . . . . . . . . . . . . . . . . . . . .  1114   
    16.8  Scrollable Result Sets   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1115   
    16.9  Result Set Meta Data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1117   
    16.10  Displaying Query Results in a  JTable    . . . . . . . . . . . . . . . . . . . . . . . .  1120   
    16.11  Relational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1131   
    16.12  Advanced Topics   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1152   
    16.13  Common Errors to Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1154   
   Review Questions and Exercises    1155   
   Programming Challenges    1160      

Appendix A Getting Started with Alice 2   1163

  Index   1189

  Credits 1205

     Available on the book’s online resource page at 
 www.pearsonhighered.com/gaddis : 

     Appendix B  The ASCII/Unicode Characters      
     Appendix C  Operator Precedence and Associativity      
     Appendix D  Java Key Words      
     Appendix E  Installing the JDK and JDK Documentation      
     Appendix F  Using the javadoc Utility      
     Appendix G  More about the Math Class      
     Appendix H  Packages      
     Appendix I  Working with Records and Random-Access Files      
     Appendix J  Installing Java DB      
     Appendix K  The QuickSort Algorithm      
     Appendix L  Answers to Checkpoints Questions      
     Appendix M  Answers to Odd-Numbered Review Questions      
     Case Study 1  The Amortization Class      
     Case Study 2  The PinTester Class      
     Case Study 3  Parallel Arrays      
     Case Study 4  The SerialNumber Class      
     Case Study 5  A Simple Text Editor Application       

http://www.pearsonhighered.com/gaddis


xv

  Preface 

 Welcome to  Starting Out with Java: Early Objects,  Fifth Edition. This book is 
intended for a one-semester or a two-quarter CS1 course. Although it is written 

for students with no prior programming background, even experienced students will benef t 
from its depth of detail. 

  Early Objects, Late Graphics 
 The approach taken by this text can be described as “early objects, late graphics.” The 
student is introduced to object-oriented programming (OOP) early in the book. The funda-
mentals of control structures, classes, and the OOP paradigm are thoroughly covered before 
moving on to graphics and more powerful applications of the Java language. 

 As with all the books in the Starting Out With series, the hallmark of this text is its clear, 
friendly, and easy-to-understand writing. In addition, it is rich in example programs that are 
concise and practical.  

  New to this edition: 
   ●    A New Chapter on JavaFX:  New to this edition is   Chapter   14   : Creating GUI Applications 

with JavaFX . JavaFX is the next-generation toolkit for creating GUIs and graphical appli-
cations in Java and is bundled with Java 7 and Java 8. This new chapter introduces the 
student to the JavaFX library and shows how to use Scene Builder (a free download from 
Oracle) to visually design GUIs. The chapter is written in such a way that it is indepen-
dent from the existing chapters on Swing and AWT. The instructor can choose to skip the 
Swing and AWT chapters and go straight to JavaFX, or cover all of the GUI chapters.  

  ●    Rewritten Database Chapter:  The database chapter, which is now  Chapter   16   , has 
been rewritten with more examples and more detailed explanations of various data-
base operations.  

  ●    Coverage of  System.out.printf  Has Been Expanded:  The section on  System.out.printf  
in  Chapter   2    has been completely rewritten and expanded to include diagrams and cover-
age of additional format specif ers.  

  ●     System.out.printf  Is Primarily Used For Formatting Console Output:  In this edition, 
 System.out.printf  is used as the primary method for formatting output in console pro-
grams. The  DecimalFormat  class is still introduced, but it is used to format numbers in 
GUI applications.  



xvi Preface

  ●    Discussion of Nested Loops Has Been Expanded:  In  Chapter   4    the section on nested loops 
has been expanded to include an  In the Spotlight  section highlighting the use of nested 
loops to print patterns.  

  ●    Usage of Random Numbers Has Been Expanded:  In  Chapter   4    the section on random 
numbers has been expanded and now includes  In the Spotlight  sections demonstrating 
how random numbers can be used to simulate the rolling of dice.  

  ●    New Motivational Example of Classes Has Been Added to  Chapter   6   :  In  Chapter   6   , 
a new motivational example of classes has been added. The example shows how a 
variation of the game of Cho-Han can be simulated with classes that represent the 
players, a dealer, and the dice.  

  ●    Multi-Catch Exception Handling:  A discussion of multi-catch exception handling has 
been added to  Chapter   10   .  

  ●    Equipping Swing GUI Applications with a Static  main  Method is Introduced Earlier:  In 
 Chapter   11   ,  GUI Applications—Part 1 , the topic of equipping a GUI class with a static 
 main  method has been moved to a point very early in the chapter.  

  ●    New Exercises and Programming Problems:  New, motivational programming problems 
have been added to many of the chapters.    

  Organization of the Text 
 The text teaches Java step-by-step. Each chapter covers a major set of topics and builds 
knowledge as students progress through the book. Although the chapters can be easily 
taught in their existing sequence, there is some f exibility. Figure P-1 shows chapter depen-
dencies. Each box represents a chapter or a group of chapters. A solid-line arrow points 
from one chapter to the chapter that must be covered previously. A dotted-line arrow indi-
cates that only a section or minor portion of the chapter depends on another chapter.   

  Brief Overview of Each Chapter 

      Chapter   1   : Introduction to Computers and Java.     This chapter provides an 
introduction to the f eld of computer science, and covers the fundamentals of hardware, 
software, and programming languages. The elements of a program, such as key words, 
variables, operators, and punctuation are discussed through the examination of a simple 
program. An overview of entering source code, compiling it, and executing it is presented. 
A brief history of Java is also given. The chapter concludes with a primer on OOP.  

   Chapter   2   : Java Fundamentals.     This chapter gets the student started in Java by 
introducing data types, identif ers, variable declarations, constants, comments, program 
output, and arithmetic operations. The conventions of programming style are also intro-
duced. The student learns to read console input with the  Scanner  class, or as an option, 
through dialog boxes with  JOptionPane  .   

   Chapter   3   : A First Look at Classes and Objects.     This chapter introduces the stu-
dent to classes. Once the student learns about f elds and methods, UML diagrams are 
introduced as a design tool. The student learns to write simple  void  methods, as well 
as simple methods that return a value. Arguments and parameters are also discussed. 
Finally, the student learns how to write constructors, and the concept of the default con-
structor is discussed. A  BankAccount  class is presented as a case study, and a section on 



 Preface xvii

object- oriented design is included. This section leads the students through the process 
of identifying classes and their responsibilities within a problem domain. There is also a 
 section that brief y explains packages and the  import  statement.  

   Chapter   4   : Decision Structures.     Here the student explores relational operators and 
relational expressions and is shown how to control the f ow of a program with the  if , 
 if/else , and  if/else if  statements. The conditional operator and the  switch  statement 
are also covered. This chapter also discusses how to compare  String  objects with the 
 equals ,  compareTo ,  equalsIgnoreCase , and  compareToIgnoreCase  methods. Formatting 
numeric output with the  DecimalFormat  class is covered. An object-oriented case study 
shows how lengthy algorithms can be decomposed into several methods.  

   Chapter   5   : Loops and Files.     This chapter covers Java’s repetition control structures. 
The  while  loop,  do-while  loop, and  for  loop are taught, along with common uses for these 
devices. Counters, accumulators, running totals, sentinels, and other application-related topics 
are discussed. Simple f le operations for reading and writing text f les are also covered.  

Chapters 1 - 7 (Cover in Order)
Java Fundamentals

Depend On

Chapter 8
Text Processing and 

Wrapper Classes

Chapter 9
Inheritance

Chapter 15
Recursion

Chapter 16
Databases

Chapter 10
Exceptions and 

Advanced File I/O

Chapter 11
GUI Applications,

Part 1

Chapter 12
GUI Applications,

Part 2

Chapter 13
Applets and  More

Depends On Depends On

Depends On Depends On

Some examples in
Chapter 16 use GUIs,
which are introduced

in Chapter 11.

Some examples in
Chapter 15 are applets,
which are introduced

in Chapter 13.

Chapter 14
Creating GUI 

Applications with 

JavaFX

Depends On

 Figure P-1   Chapter Dependencies       



xviii Preface

   Chapter   6   : A Second Look at Classes and Objects.     This chapter shows stu-
dents how to write classes with added capabilities. Static methods and f elds, interaction 
between objects, passing objects as arguments, and returning objects from methods are 
discussed. Aggregation and the “has a” relationship is covered, as well as enumerated 
types. A section on object-oriented design shows how to use CRC (class, responsibilities, 
and collaborations) cards to determine the collaborations among classes.  

   Chapter   7   : Arrays and the  ArrayList  Class.     In this chapter students learn to create 
and work with single and multidimensional arrays. Numerous array-processing techniques 
are demonstrated, such as summing the elements in an array, f nding the highest and lowest 
values, and sequentially searching an array are also discussed. Other topics, including ragged 
arrays and variable-length arguments (varargs), are also discussed. The  ArrayList  class is 
introduced, and Java’s generic types are brief y discussed and demonstrated.  

   Chapter   8   : Text Processing and Wrapper Classes.     This chapter discusses the 
numeric and character wrapper classes. Methods for converting numbers to strings, test-
ing the case of characters, and converting the case of characters are covered. Autoboxing 
and unboxing are also discussed. More  String  class methods are covered, including using 
the  split  method to tokenize strings. The chapter also covers the  StringBuilder  and 
 StringTokenizer  classes.  

   Chapter   9   : Inheritance.     The study of classes continues in this chapter with the sub-
jects of inheritance and polymorphism. The topics covered include superclass and subclass 
constructors, method overriding, polymorphism and dynamic binding, protected and 
package access, class hierarchies, abstract classes and methods, and interfaces.  

   Chapter   10   : Exceptions and Advanced File I/O.     In this chapter the student learns 
to develop enhanced error trapping techniques using exceptions. Handling an exception is 
covered, as well as developing and throwing custom exceptions. This chapter also discusses 
advanced techniques for working with sequential access, random access, text, and binary f les.  

   Chapter   11   : GUI Applications—Part 1.     This chapter presents the basics of develop-
ing graphical user interface (GUI) applications with Swing. Fundamental Swing compo-
nents and the basic concepts of event-driven programming are covered.  

   Chapter   12   : GUI Applications—Part 2.     This chapter continues the study of GUI 
application development. More advanced components, as well as menu systems and 
 look-and-feel, are covered.  

   Chapter   13   : Applets and More.     Here the student applies his or her knowledge of 
GUI development to the creation of applets. In addition to using Swing applet classes, 
Abstract Windowing Toolkit classes are also discussed for portability. Drawing simple 
graphical shapes is also discussed.  

   Chapter   14   : Creating GUI Applications with JavaFX.     This chapter introduces 
JavaFX, which is the next generation library for creating graphical applications in Java. 
This chapter also shows how to use Scene Builder, a free screen designer from Oracle, to 
visually design GUIs. This chapter is written in such a way that it is independent from the 
existing chapters on Swing and AWT. You can choose to skip  Chapters   11   ,    12   , and    13   , 
and go straight to  Chapter   14   , or cover all of the GUI chapters.  



 Preface xix

   Chapter   15   : Recursion.     This chapter presents recursion as a problem-solving 
 technique. Numerous examples of recursion are demonstrated.  

   Chapter   16   : Databases.     This chapter introduces the student to database program-
ming. The basic concepts of database management systems and SQL are f rst presented. 
Then the student learns to use JDBC to write database applications in Java. Relational 
data is covered, and numerous example programs are presented throughout the chapter.  

   Appendix   A   .     Getting Started with Alice 

  Appendixes B–M  and  Case Studies 1-5  are available on the book’s online resource page at 
 www.pearsonhighered.com/gaddis .    

  Features of the Text 

     Concept Statements     Each major section of the text starts with a concept statement. 
This statement summarizes the ideas of the section.  

  Example Programs     The text has an abundant number of complete example programs, 
each designed to highlight the topic currently being studied. In most cases, these are prac-
tical, real-world examples. Source code for these programs is provided so that students 
can run the programs themselves.  

  Program Output     After each example program there is a sample of its screen output. 
This immediately shows the student how the program should function. 

  Checkpoints 

 Checkpoints are questions placed throughout each chapter as a self-test study aid. Answers 
for all Checkpoint questions are found in Appendix L (available for download) so students 
can check how well they have learned a new topic. To download Appendix L, go to the 
 Gaddis resource page at  www.pearsonhighered.com/gaddis .      

  NOTE:     Notes appear at appropriate places throughout the text. They are short 
 explanations of interesting or often misunderstood points relevant to the topic at hand.  

  WARNING!     Warnings are notes that caution the student about certain Java features, pro-
gramming techniques, or practices that can lead to malfunctioning programs or lost data.   

  VidoeNotes.     A series of online videos, developed specif cally for this book, are available 
for viewing at  www.pearsonhighered.com/gaddis . Icons appear throughout the text alert-
ing the student to videos about specif c topics.  

  Case Studies     Case studies that simulate real-world applications appear in many chap-
ters throughout the text, with complete code provided for each. These case studies are 
designed to highlight the major topics of the chapter in which they appear.  

  Review Questions and Exercises     Each chapter presents a thorough and diverse set 
of review questions and exercises. They include Multiple Choice and True/False, Find the 
Error, Algorithm Workbench, and Short Answer.  

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis


xx Preface

  Programming Challenges     Each chapter offers a pool of programming challenges 
designed to solidify students’ knowledge of topics at hand. In most cases the assignments 
present real-world problems to be solved.   

  In the Spotlight.   Many of the chapters provide an  In the Spotlight  section that presents a pro-
gramming problem, along with detailed, step-by-step analysis showing the student how to solve it.     

  Supplements 

  Companion Website 

 Many student resources are available for this book from the book’s Companion Website. 
The following items are available at  www.pearsonhighered.com/gaddis using  the Access 
Code bound into the front of the book: 

   ●   The source code for each example program in the book  
  ●   Access to the book’s companion VideoNotes  
  ●   Appendixes B–M (listed in the Table of Contents)  
  ●   A collection of f ve valuable Case Studies (listed in the Table of Contents)  
  ●   Links to download the Java™ Development Kit  
  ●   Links to download numerous programming environments, including jGRASP™, 

Eclipse™, TextPad™, NetBeans™, JCreator, and DrJava    

  Online Practice and Assessment with MyProgrammingLab 

 MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle 
with the basic concepts and paradigms of popular high-level programming languages. 

 A self-study and homework tool, a MyProgrammingLab course consists of hundreds of 
small practice problems organized around the structure of this textbook. For students, the 
system automatically detects errors in the logic and syntax of their code submissions and 
offers targeted hints that enable students to f gure out what went wrong—and why. For 
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the 
code inputted by students for review. 

 MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the 
makers of the CodeLab interactive programming exercise system. For a full demonstration, 
to see feedback from instructors and students, or to get started using MyProgrammingLab 
in your course, visit  www.myprogramminglab.com .  

  Instructor Resources 

 The following supplements are available to qualif ed instructors only. Visit the Pearson 
Education Instructor Resource Center ( www.pearsonhighered.com/irc ) for information on 
how to access them: 

   ●   Answers to all Review Questions in the text  
  ●   Solutions for all Programming Challenges in the text  
  ●   PowerPoint presentation slides for every chapter  
  ●   Computerized test bank      

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com
http://www.pearsonhighered.com/irc


   Ahmad Abuhejleh 
  University of Wisconsin–
River Falls   

  Colin Archibald 
  Valencia CC   

  Ijaz Awani 
  Savannah State University   

  Dr. Charles W. Bane 
  Tarleton State University   

  Dwight Barnett 
  Virginia Tech   

  Asoke Bhattacharyya 
  Saint Xavier University, Chicago   

  Marvin Bishop 
  Manhattan College   

  Heather Booth 
  University Tennessee—Knoxville   

  David Boyd 
  Valdosta University   

  Julius Brandstatter 
  Golden Gate University   

  Kim Cannon 
  Greenville Tech   

  James Chegwidden 
  Tarrant County College   

  Kay Chen 
  Bucks County Community College   

  Brad Chilton 
  Tarleton State University   

  Diane Christie 
  University of Wisconsin–Stout   

  Cara Cocking 
  Marquette University   

  Walter C. Daugherity 
  Texas A&M University   

  Michael Doherty 
  University of the Pacific   

  Jeanne M. Douglas 
  University of Vermont   

  Sander Eller 
  California Polytechnic University—
Pomona   

  Brooke Estabrook-Fishinghawk 
  Mesa Community College   

  Mike Fry 
  Lebanon Valley College   

 Preface xxi

    Rebecca Caldwell 
  Winston-Salem State University   

  Dan Dao 
  Richland College   

  Naser Heravi 
  College of Southern Nevada   

  Deborah Hughes 
  Lyndon State College   

  Nicole Jiao 
  South Texas College   

  Kurt Kominek 
  Northeast State Community College   

  Kevin Mess 
  College of Southern Nevada   

  Lisa Olivieri 
  Chestnut Hill College   

  Mark Swanson 
  Southeast Technical    

  Acknowledgments 
 There have been many helping hands in the development and publication of this text. I 
would like to thank the following faculty reviewers for their helpful suggestions and exper-
tise during the production of this text: 

Reviewers For Previous Editions



xxii Preface

  Georgia R. Grant 
  College of San Mateo   

  Chris Haynes 
  Indiana University   

  Ric Heishman 
  Northern Virginia Community College   

  Deedee Herrera 
  Dodge City Community College   

  Mary Hovik 
  Lehigh Carbon Community College   

  Brian Howard 
  DePauw University   

  Norm Jacobson 
  University of California at Irvine   

  Dr. Stephen Judd 
  University of Pennsylvania   

  Harry Lichtbach 
  Evergreen Valley College   

  Michael A. Long 
  California State University, Chico   

  Tim Margush 
  University of Akron   

  Blayne E. Mayf eld 
  Oklahoma State University   

  Scott McLeod 
  Riverside Community College   

  Dean Mellas 
  Cerritos College   

  Georges Merx 
  San Diego Mesa College   

  Martin Meyers 
  California State University, Sacramento   

  Pati Milligan 
  Baylor University   

  Godfrey Muganda 
  North Central College   

  Steve Newberry 
  Tarleton State University   

  Lynne O’Hanlon 
  Los Angeles Pierce College   

  Merrill Parker 
  Chattaonooga State Technical 
 Community College   

  Bryson R. Payne 
  North Georgia College and State 
 University   

  Rodney Pearson 
  Mississippi State University   

  Peter John Polito 
  Springfield College   

  Charles Robert Putnam 
  California State University, 
Northridge   

  Dr. Y. B. Reddy 
  Grambling State University   

  Carolyn Schauble 
  Colorado State University   

  Bonnie Smith 
  Fresno City College   

  Daniel Spiegel 
  Kutztown University   

  Caroline St. Clair 
  North Central College   

  Karen Stanton 
  Los Medanos College   

  Peter H.Van Der Goes 
  Rose State College   

  Tuan A Vo 
  Mt. San Antonio College   

  Xiaoying Wang 
  University of Mississippi     



 Preface xxiii

 Special thanks goes to Chris Rich for his assistance with the JavaFX chapter. I would like to 
thank my family for all the patience, love, and support they have shown me throughout this 
project. I would also like to thank everyone at Pearson Education for making the Starting 
Out With series so successful. I am extremely fortunate to have Matt Goldstein as my edi-
tor. I am also fortunate to work with Yez Alyan and the computer science marketing team 
at Pearson. They do a great job getting my books out to the academic community. I had 
a great production team led by Scott Disanno, Kayla Smith-Tarbox, and Gregory Dulles. 
Thanks to you all!  

  About the Author 
 Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony has 
nearly twenty years experience teaching computer science courses at Haywood Community 
College in North Carolina. He is a highly acclaimed instructor who was previously selected 
as the North Carolina Community College Teacher of the Year and has received the Teach-
ing Excellence award from the National Institute for Staff and Organizational Develop-
ment. Besides Java™ books, the Starting Out series includes introductory books using the 
C++ programming language, Microsoft® Visual Basic®, Microsoft® C#®, Python, Pro-
gramming Logic and Design, Alice, and App Inventor, all published by Pearson.   



Through the power of practice and immediate personalized  

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

http://www.myprogramminglab.com


1

     TOPICS 

    C
H

A
P

T
E

R 

1  Introduction to 
Computers and Java 

     1.1  Introduction      
     1.2  Why Program?      
     1.3  Computer Systems: Hardware and 

Software      

     1.4  Programming Languages      
     1.5  What Is a Program Made of?      
     1.6  The Programming Process      
     1.7  Object-Oriented Programming        

      1.1  Introduction 
 This book teaches programming using Java. Java is a powerful language that runs on prac-
tically every type of computer. It can be used to create large applications or small programs, 
known as applets, that are part of a Web site. Before plunging right into learning Java, 
however, this chapter will review the fundamentals of computer hardware and software and 
then take a broad look at computer programming in general.  

   1.2  Why Program? 

  CONCEPT:      Computers can do many different jobs because they are programmable.   

 Every profession has tools that make the job easier to do. Carpenters use hammers, saws, 
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics tech-
nicians use probes, scopes, and meters. Some tools are unique and can be categorized as 
belonging to a single profession. For example, surgeons have certain tools that are designed 
specifically for surgical operations. Those tools probably aren’t used by anyone other than 
surgeons. There are some tools, however, that are used in several professions. Screwdrivers, 
for instance, are used by mechanics, carpenters, and many others. 

 The computer is a tool used by so many professions that it cannot be easily categorized. 
It can perform so many different jobs that it is perhaps the most versatile tool ever made. 
To the accountant, computers balance books, analyze profits and losses, and prepare tax 
reports. To the factory worker, computers control manufacturing machines and track pro-
duction. To the mechanic, computers analyze the various systems in an automobile and 



2 Chapter 1  Introduction to Computers and Java

pinpoint hard-to-find problems. The computer can do such a wide variety of tasks because 
it can be  programmed . It is a machine specifically designed to follow instructions. Because 
of the computer’s programmability, it doesn’t belong to any single profession. Computers 
are designed to do whatever job their programs, or  software,  tell them to do. 

 Computer programmers do a very important job. They create software that transforms com-
puters into the specialized tools of many trades. Without programmers, the users of computers 
would have no software, and without software, computers would not be able to do anything. 

 Computer programming is both an art and a science. It is an art because every aspect of a 
program should be carefully designed. Here are a few of the things that must be designed 
for any real-world computer program: 

   ●   The logical flow of the instructions  
  ●   The mathematical procedures  
  ●   The layout of the programming statements  
  ●   The appearance of the screens  
  ●   The way information is presented to the user  
  ●   The program’s “user friendliness”  
  ●   Help systems and written documentation   

 There is also a science to programming. Because programs rarely work right the first time 
they are written, a lot of analyzing, experimenting, correcting, and redesigning is required. 
This demands patience and persistence of the programmer. Writing software demands dis-
cipline as well. Programmers must learn special languages such as Java because computers 
do not understand English or other human languages. Programming languages have strict 
rules that must be carefully followed. 

 Both the artistic and scientific nature of programming makes writing computer software 
like designing a car: Both cars and programs should be functional, efficient, powerful, easy 
to use, and pleasing to look at.  

   1.3  Computer Systems: Hardware and Software 

  CONCEPT:      All computer systems consist of similar hardware devices and software 
components.   

  Hardware 
  Hardware  refers to the physical components that a computer is made of. A computer, as 
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system 
consists of the following major components: 

   ●   The central processing unit  
  ●   Main memory  
  ●   Secondary storage devices  
  ●   Input devices  
  ●   Output devices   

 The organization of a computer system is shown in  Figure   1-1   .  



 1.3 Computer Systems: Hardware and Software 3

 Let’s take a closer look at each of these devices. 

  The CPU 

 At the heart of a computer is its  central processing unit,  or  CPU . The CPU’s job is to fetch 
instructions, follow the instructions, and produce some resulting data. Internally, the central 
processing unit consists of two parts: the  control unit  and the  arithmetic and logic unit (ALU) . 
The control unit coordinates all of the computer’s operations. It is responsible for determining 
where to get the next instruction and regulating the other major components of the computer 
with control signals. The arithmetic and logic unit, as its name suggests, is designed to per-
form mathematical operations. The organization of the CPU is shown in  Figure   1-2   . 

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

 Figure 1-1   The organization of a computer system       

 Figure 1-2   The organization of the CPU       



4 Chapter 1  Introduction to Computers and Java

  A program is a sequence of instructions stored in the computer’s memory. When a computer 
is running a program, the CPU is engaged in a process known formally as the  fetch/decode/ 
execute cycle . The steps in the fetch/decode/execute cycle are as follows: 

    Fetch   The CPU’s control unit fetches, from main memory, the next instruction in the 
sequence of program instructions.  

   Decode   The instruction is encoded in the form of a number. The control unit decodes the 
instruction and generates an electronic signal.  

   Execute   The signal is routed to the appropriate component of the computer (such as the 
ALU, a disk drive, or some other device). The signal causes the component to 
perform an operation.   

 These steps are repeated as long as there are instructions to perform.  

  Main Memory 

 Commonly known as  random-access memory , or  RAM , the computer’s main memory is 
a device that holds data. Specifically, RAM holds the sequences of instructions in the pro-
grams that are running and the data those programs are using. 

 Memory is divided into sections that hold an equal amount of data. Each section is made of 
eight “switches” that may be either on or off. A switch in the on position usually represents 
the number 1, although a switch in the off position usually represents the number 0. The 
computer stores data by setting the switches in a memory location to a pattern that repre-
sents a character or a number. Each of these switches is known as a  bit , which stands for 
 binary digit . Each section of memory, which is a collection of eight bits, is known as a  byte . 
Each byte is assigned a unique number known as an  address . The addresses are ordered 
from lowest to highest. A byte is identified by its address in much the same way a post office 
box is identified by an address.  Figure   1-3    shows a series of bytes with their addresses. In 
the illustration, sample data is stored in memory. The number 149 is stored in the byte at 
address 16, and the number 72 is stored in the byte at address 23. 

 RAM is usually a volatile type of memory, used only for temporary storage. When the 
computer is turned off, the contents of RAM are erased.   

 Figure 1-3   Memory bytes and their addresses       

  Secondary Storage 

 Secondary storage is a type of memory that can hold data for long periods of time—even 
when there is no power to the computer. Programs are normally stored in secondary mem-
ory and loaded into main memory as needed. Important data, such as word processing 
documents, payroll data, and inventory figures, is saved to secondary storage as well. 

 The most common type of secondary storage device is the  disk drive . A traditional disk 
drive stores data by magnetically encoding it onto a spinning circular disk.  Solid-state drives , 



 1.3 Computer Systems: Hardware and Software 5

which store data in solid-state memory, are increasingly becoming popular. A solid-state 
drive has no moving parts and operates faster than a traditional disk drive. Most computers 
have some sort of secondary storage device, either a traditional disk drive or a solid-state 
drive, mounted inside their case. External drives are also available that connect to one of 
the computer’s communication ports. External drives can be used to create backup copies of 
important data or to move data to another computer. 

 In addition to external drives, many types of devices have been created for copying data 
and for moving it to other computers.  Universal Serial Bus drives , or  USB drives,  are small 
devices that plug into the computer’s USB port and appear to the system as a disk drive. 
These drives do not actually contain a disk, however. They store data in a special type of 
memory known as  flash memory.  USB drives are inexpensive, reliable, and small enough to 
be carried in your pocket. 

 Optical devices such as the  CD  (compact disc) and the  DVD  (digital versatile disc) are 
also popular for data storage. Data is not recorded magnetically on an optical disc, but is 
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the 
pits and thus read the encoded data. Optical discs hold large amounts of data, and because 
recordable CD and DVD drives are now commonplace, they make a good medium for 
creating backup copies of data.  

  Input Devices 

 Input is any data the computer collects from the outside world. The device that collects the 
data and sends it to the computer is called an  input device . Common input devices are the 
keyboard, mouse, scanner, microphone, Webcam, and digital camera. Disk drives, optical 
drives, and USB drives can also be considered input devices because programs and data are 
retrieved from them and loaded into the computer’s memory.  

  Output Devices 

 Output is any data the computer sends to the outside world. It might be a sales report, a 
list of names, or a graphic image. The data is sent to an output device, which formats and 
presents it. Common output devices are monitors and printers. Disk drives, USB drives, and 
CD/DVD recorders can also be considered output devices because the CPU sends data to 
them in order to be saved.   

  Software 
 As previously mentioned, software refers to the programs that run on a computer. There are 
two general categories of software: operating systems and application software. An  operat-
ing system  is a set of programs that manages the computer’s hardware devices and controls 
their processes. Most all modern operating systems are multitasking, which means they are 
capable of running multiple programs at once. Through a technique called  time sharing,  a 
multitasking system divides the allocation of hardware resources and the attention of the 
CPU among all the executing programs. UNIX, Linux, and modern versions of Windows 
and Mac OS are multitasking operating systems. 

  Application software  refers to programs that make the computer useful to the user. These pro-
grams solve specific problems or perform general operations that satisfy the needs of the user. 
Word processing, spreadsheet, and database programs are all examples of application software. 



6 Chapter 1  Introduction to Computers and Java

  Checkpoint 

  1.1    Why is the computer used by so many different people, in so many different 
 professions?   

  1.2    List the five major hardware components of a computer system.   

  1.3    Internally, the CPU consists of what two units?   

  1.4    Describe the steps in the fetch/decode/execute cycle.   

  1.5    What is a memory address? What is its purpose?   

  1.6    Explain why computers have both main memory and secondary storage.   

  1.7    What does the term “multitasking” mean?      

   1.4  Programming Languages 

  CONCEPT:      A program is a set of instructions a computer follows in order to perform 
a task. A programming language is a special language used to write 
computer programs.   

  What Is a Program? 
 Computers are designed to follow instructions. A computer program is a set of instructions 
that enable the computer to solve a problem or perform a task. For example, suppose we 
want the computer to calculate someone’s gross pay. The following is a list of things the 
computer should do to perform this task. 

    1.   Display a message on the screen: “How many hours did you work?”  
   2.   Allow the user to enter the number of hours worked.  
   3.   Once the user enters a number, store it in memory.  
   4.   Display a message on the screen: “How much do you get paid per hour?”  
   5.   Allow the user to enter an hourly pay rate.  
   6.   Once the user enters a number, store it in memory.  
   7.   Once both the number of hours worked and the hourly pay rate are entered, multiply 

the two numbers and store the result in memory.  
   8.   Display a message on the screen that shows the amount of money earned. The mes-

sage must include the result of the calculation performed in Step 7.   

 Collectively, these instructions are called an  algorithm . An algorithm is a set of well-defined 
steps for performing a task or solving a problem. Notice that these steps are sequentially 
ordered. Step 1 should be performed before Step 2, and so forth. It is important that these 
instructions be performed in their proper sequence. 

 Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process 
instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s 
and 0s). The binary numbers form machine language instructions, which the CPU interprets 
as commands. Here is an example of what a machine language instruction might look like: 

  1011010000000101  



 1.4 Programming Languages 7

 As you can imagine, the process of encoding an algorithm in machine language is very 
tedious and difficult. In addition, each different type of CPU has its own machine language. 
If you wrote a machine language program for computer A and then wanted to run it on 
computer B, which has a different type of CPU, you would have to rewrite the program in 
computer B’s machine language. 

 Programming languages, which use words instead of numbers, were invented to ease the 
task of programming. A program can be written in a programming language, which is much 
easier to understand than machine language, and then translated into machine language. 
Programmers use software to perform this translation. Many programming languages have 
been created.  Table   1-1    lists a few of the well-known ones. 

  Table 1-1   Programming languages 

 Language  Description 

 BASIC  Beginners All-purpose Symbolic Instruction Code is a general-purpose, proce-
dural programming language. It was originally designed to be simple enough 
for beginners to learn. 

 FORTRAN  FORmula TRANslator is a procedural language designed for programming 
complex mathematical algorithms. 

 COBOL  Common Business-Oriented Language is a procedural language designed for 
business applications. 

 Pascal  Pascal is a structured, general-purpose, procedural language designed primarily 
for teaching programming. 

 C  C is a structured, general-purpose, procedural language developed at Bell 
Laboratories. 

 C++  Based on the C language, C++ offers object-oriented features not found in C. 
C++ was also invented at Bell Laboratories. 

 C#  Pronounced “C sharp.” It is a language invented by Microsoft for developing 
applications based on the Microsoft .NET platform. 

 Java  Java is an object-oriented language invented at Sun Microsystems and is now 
owned by Oracle. It may be used to develop stand-alone applications that operate 
on a single computer, applications that run over the Internet from a Web server, and 
applets that run in a Web browser. 

 JavaScript  JavaScript is a programming language that can be used in a Web site to perform 
simple operations. Despite its name, JavaScript is not related to Java. 

 Perl  A general-purpose programming language that is widely used on Internet servers. 

 PHP  A programming language used primarily for developing Web server applications 
and dynamic Web pages. 

 Python  Python is an object-oriented programming language that is used in both business 
and academia. Many popular Web sites have features that are developed in Python. 

 Ruby  Ruby is a simple but powerful object-oriented programming language. It can be used 
for a variety of purposes, from small utility programs to large Web applications. 

 Visual Basic  Visual Basic is a Microsoft programming language and software development envi-
ronment that allows programmers to create Windows-based applications quickly. 



8 Chapter 1  Introduction to Computers and Java

  A History of Java 
 In 1991 a team was formed at Sun Microsystems (a company that is now owned by Oracle) 
to speculate about the important technological trends that might emerge in the near future. 
The team, which was named the Green Team, concluded that computers would merge 
with consumer appliances. Their first project was to develop a handheld device named *7 
(pronounced “star seven”) that could be used to control a variety of home entertainment 
devices. In order for the unit to work, it had to use a programming language that could be 
processed by all the devices it controlled. This presented a problem because different brands 
of consumer devices use different processors, each with its own machine language. 

 Because no such universal language existed, James Gosling, the team’s lead engineer, created 
one. Programs written in this language, which was originally named Oak, were not trans-
lated into the machine language of a specific processor, but were translated into an interme-
diate language known as  byte code . Another program would then translate the byte code 
into machine language that could be executed by the processor in a specific consumer device. 

 Unfortunately, the technology developed by the Green Team was ahead of its time. No 
customers could be found, mostly because the computer-controlled consumer appliance 
industry was just beginning. But rather than abandoning their hard work and moving on 
to other projects, the team saw another opportunity: the Internet. The Internet is a perfect 
environment for a universal programming language such as Oak. It consists of numerous 
different computer platforms connected together in a single network. 

 To demonstrate the effectiveness of their language, which was renamed Java, the team used 
it to develop a Web browser. The browser, named HotJava, was able to download and run 
small Java programs known as applets. This gave the browser the capability to display 
animation and interact with the user. HotJava was demonstrated at the 1995 SunWorld 
conference before a wowed audience. Later the announcement was made that Netscape 
would incorporate Java technology into its Navigator browser. Other Internet companies 
rapidly followed, increasing the acceptance and the influence of the Java language. Today, 
Java is very popular for developing not only applets for the Internet, but also stand-alone 
applications.  

  Java Applications and Applets 
 There are two types of programs that may be created with Java: applications and applets. 
An application is a stand-alone program that runs on your computer. You have probably 
used several applications already, such as word processors, spreadsheets, database manag-
ers, and graphics programs. Although Java may be used to write these types of applications, 
other languages such as C, C++, and Visual Basic are also used. 

 In the previous section you learned that Java may also be used to create applets. The term 
 applet  refers to a small application, in the same way that the term  piglet  refers to a small 
pig. Unlike applications, an applet is designed to be transmitted over the Internet from a 
Web server, and then executed in a Web browser. Applets are important because they can 
be used to extend the capabilities of a Web page significantly. 

 Web pages are normally written in hypertext markup language (HTML). HTML is limited, 
however, because it merely describes the content and layout of a Web page. HTML does 
not have sophisticated abilities such as performing math calculations and interacting with 



 1.5 What Is a Program Made of? 9

the user. A Web designer can write a Java applet to perform operations that are normally 
performed by an application and embed it in a Web site. When someone visits the Web site, 
the applet is downloaded to the visitor’s browser and executed. 

  Security 

 Any time content is downloaded from a Web server to a visitor’s computer, security is 
an important concern. Because Java is a full-featured programming language, at first you 
might be suspicious of any Web site that transmits an applet to your computer. After all, 
couldn’t a Java applet do harmful things, such as deleting the contents of the disk drive or 
transmitting private information to another computer? Fortunately, the answer is no. Web 
browsers run Java applets in a secure environment within your computer’s memory and do 
not allow them to access resources, such as a disk drive, that are outside that environment.    

   1.5  What Is a Program Made of? 

  CONCEPT:      There are certain elements that are common to all programming 
languages.   

  Language Elements 
 All programming languages have some things in common.  Table   1-2    lists the common ele-
ments you will find in almost every language. 

  Table 1-2   The common elements of a programming language  

 Language Element  Description 

 Key Words  These are words that have a special meaning in the programming lan-
guage. They may be used for their intended purpose only. Key words 
are also known as  reserved words . 

 Operators  Operators are symbols or words that perform operations on one or more 
operands. An  operand  is usually an item of data, such as a number. 

 Punctuation  Most programming languages require the use of punctuation char-
acters. These characters serve specific purposes, such as marking the 
beginning or ending of a statement, or separating items in a list. 

 Programmer-Defined 
Names 

 Unlike key words, which are part of the programming language, these 
are words or names that are defined by the programmer. They are used 
to identify storage locations in memory and parts of the program that 
are created by the programmer. Programmer-defined names are often 
called  identifiers . 

 Syntax  These are rules that must be followed when writing a program. Syntax 
dictates how key words and operators may be used, and where punc-
tuation symbols must appear. 

 Let’s look at an example Java program and identify an instance of each of these elements. 
 Code Listing   1-1    shows the code listing with each line numbered.   




