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  Preface 

 Welcome to  Starting Out with Java: Early Objects,  Fifth Edition. This book is 
intended for a one-semester or a two-quarter CS1 course. Although it is written 

for students with no prior programming background, even experienced students will benef t 
from its depth of detail. 

  Early Objects, Late Graphics 
 The approach taken by this text can be described as “early objects, late graphics.” The 
student is introduced to object-oriented programming (OOP) early in the book. The funda-
mentals of control structures, classes, and the OOP paradigm are thoroughly covered before 
moving on to graphics and more powerful applications of the Java language. 

 As with all the books in the Starting Out With series, the hallmark of this text is its clear, 
friendly, and easy-to-understand writing. In addition, it is rich in example programs that are 
concise and practical.  

  New to this edition: 
   ●    A New Chapter on JavaFX:  New to this edition is   Chapter   14   : Creating GUI Applications 

with JavaFX . JavaFX is the next-generation toolkit for creating GUIs and graphical appli-
cations in Java and is bundled with Java 7 and Java 8. This new chapter introduces the 
student to the JavaFX library and shows how to use Scene Builder (a free download from 
Oracle) to visually design GUIs. The chapter is written in such a way that it is indepen-
dent from the existing chapters on Swing and AWT. The instructor can choose to skip the 
Swing and AWT chapters and go straight to JavaFX, or cover all of the GUI chapters.  

  ●    Rewritten Database Chapter:  The database chapter, which is now  Chapter   16   , has 
been rewritten with more examples and more detailed explanations of various data-
base operations.  

  ●    Coverage of  System.out.printf  Has Been Expanded:  The section on  System.out.printf  
in  Chapter   2    has been completely rewritten and expanded to include diagrams and cover-
age of additional format specif ers.  

  ●     System.out.printf  Is Primarily Used For Formatting Console Output:  In this edition, 
 System.out.printf  is used as the primary method for formatting output in console pro-
grams. The  DecimalFormat  class is still introduced, but it is used to format numbers in 
GUI applications.  
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  ●    Discussion of Nested Loops Has Been Expanded:  In  Chapter   4    the section on nested loops 
has been expanded to include an  In the Spotlight  section highlighting the use of nested 
loops to print patterns.  

  ●    Usage of Random Numbers Has Been Expanded:  In  Chapter   4    the section on random 
numbers has been expanded and now includes  In the Spotlight  sections demonstrating 
how random numbers can be used to simulate the rolling of dice.  

  ●    New Motivational Example of Classes Has Been Added to  Chapter   6   :  In  Chapter   6   , 
a new motivational example of classes has been added. The example shows how a 
variation of the game of Cho-Han can be simulated with classes that represent the 
players, a dealer, and the dice.  

  ●    Multi-Catch Exception Handling:  A discussion of multi-catch exception handling has 
been added to  Chapter   10   .  

  ●    Equipping Swing GUI Applications with a Static  main  Method is Introduced Earlier:  In 
 Chapter   11   ,  GUI Applications—Part 1 , the topic of equipping a GUI class with a static 
 main  method has been moved to a point very early in the chapter.  

  ●    New Exercises and Programming Problems:  New, motivational programming problems 
have been added to many of the chapters.    

  Organization of the Text 
 The text teaches Java step-by-step. Each chapter covers a major set of topics and builds 
knowledge as students progress through the book. Although the chapters can be easily 
taught in their existing sequence, there is some f exibility. Figure P-1 shows chapter depen-
dencies. Each box represents a chapter or a group of chapters. A solid-line arrow points 
from one chapter to the chapter that must be covered previously. A dotted-line arrow indi-
cates that only a section or minor portion of the chapter depends on another chapter.   

  Brief Overview of Each Chapter 

      Chapter   1   : Introduction to Computers and Java.     This chapter provides an 
introduction to the f eld of computer science, and covers the fundamentals of hardware, 
software, and programming languages. The elements of a program, such as key words, 
variables, operators, and punctuation are discussed through the examination of a simple 
program. An overview of entering source code, compiling it, and executing it is presented. 
A brief history of Java is also given. The chapter concludes with a primer on OOP.  

   Chapter   2   : Java Fundamentals.     This chapter gets the student started in Java by 
introducing data types, identif ers, variable declarations, constants, comments, program 
output, and arithmetic operations. The conventions of programming style are also intro-
duced. The student learns to read console input with the  Scanner  class, or as an option, 
through dialog boxes with  JOptionPane  .   

   Chapter   3   : A First Look at Classes and Objects.     This chapter introduces the stu-
dent to classes. Once the student learns about f elds and methods, UML diagrams are 
introduced as a design tool. The student learns to write simple  void  methods, as well 
as simple methods that return a value. Arguments and parameters are also discussed. 
Finally, the student learns how to write constructors, and the concept of the default con-
structor is discussed. A  BankAccount  class is presented as a case study, and a section on 
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object- oriented design is included. This section leads the students through the process 
of identifying classes and their responsibilities within a problem domain. There is also a 
 section that brief y explains packages and the  import  statement.  

   Chapter   4   : Decision Structures.     Here the student explores relational operators and 
relational expressions and is shown how to control the f ow of a program with the  if , 
 if/else , and  if/else if  statements. The conditional operator and the  switch  statement 
are also covered. This chapter also discusses how to compare  String  objects with the 
 equals ,  compareTo ,  equalsIgnoreCase , and  compareToIgnoreCase  methods. Formatting 
numeric output with the  DecimalFormat  class is covered. An object-oriented case study 
shows how lengthy algorithms can be decomposed into several methods.  

   Chapter   5   : Loops and Files.     This chapter covers Java’s repetition control structures. 
The  while  loop,  do-while  loop, and  for  loop are taught, along with common uses for these 
devices. Counters, accumulators, running totals, sentinels, and other application-related topics 
are discussed. Simple f le operations for reading and writing text f les are also covered.  

Chapters 1 - 7 (Cover in Order)
Java Fundamentals

Depend On

Chapter 8
Text Processing and 

Wrapper Classes

Chapter 9
Inheritance

Chapter 15
Recursion

Chapter 16
Databases

Chapter 10
Exceptions and 

Advanced File I/O

Chapter 11
GUI Applications,

Part 1

Chapter 12
GUI Applications,

Part 2

Chapter 13
Applets and  More

Depends On Depends On

Depends On Depends On

Some examples in
Chapter 16 use GUIs,
which are introduced

in Chapter 11.

Some examples in
Chapter 15 are applets,
which are introduced

in Chapter 13.

Chapter 14
Creating GUI 

Applications with 

JavaFX

Depends On

 Figure P-1   Chapter Dependencies       
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   Chapter   6   : A Second Look at Classes and Objects.     This chapter shows stu-
dents how to write classes with added capabilities. Static methods and f elds, interaction 
between objects, passing objects as arguments, and returning objects from methods are 
discussed. Aggregation and the “has a” relationship is covered, as well as enumerated 
types. A section on object-oriented design shows how to use CRC (class, responsibilities, 
and collaborations) cards to determine the collaborations among classes.  

   Chapter   7   : Arrays and the  ArrayList  Class.     In this chapter students learn to create 
and work with single and multidimensional arrays. Numerous array-processing techniques 
are demonstrated, such as summing the elements in an array, f nding the highest and lowest 
values, and sequentially searching an array are also discussed. Other topics, including ragged 
arrays and variable-length arguments (varargs), are also discussed. The  ArrayList  class is 
introduced, and Java’s generic types are brief y discussed and demonstrated.  

   Chapter   8   : Text Processing and Wrapper Classes.     This chapter discusses the 
numeric and character wrapper classes. Methods for converting numbers to strings, test-
ing the case of characters, and converting the case of characters are covered. Autoboxing 
and unboxing are also discussed. More  String  class methods are covered, including using 
the  split  method to tokenize strings. The chapter also covers the  StringBuilder  and 
 StringTokenizer  classes.  

   Chapter   9   : Inheritance.     The study of classes continues in this chapter with the sub-
jects of inheritance and polymorphism. The topics covered include superclass and subclass 
constructors, method overriding, polymorphism and dynamic binding, protected and 
package access, class hierarchies, abstract classes and methods, and interfaces.  

   Chapter   10   : Exceptions and Advanced File I/O.     In this chapter the student learns 
to develop enhanced error trapping techniques using exceptions. Handling an exception is 
covered, as well as developing and throwing custom exceptions. This chapter also discusses 
advanced techniques for working with sequential access, random access, text, and binary f les.  

   Chapter   11   : GUI Applications—Part 1.     This chapter presents the basics of develop-
ing graphical user interface (GUI) applications with Swing. Fundamental Swing compo-
nents and the basic concepts of event-driven programming are covered.  

   Chapter   12   : GUI Applications—Part 2.     This chapter continues the study of GUI 
application development. More advanced components, as well as menu systems and 
 look-and-feel, are covered.  

   Chapter   13   : Applets and More.     Here the student applies his or her knowledge of 
GUI development to the creation of applets. In addition to using Swing applet classes, 
Abstract Windowing Toolkit classes are also discussed for portability. Drawing simple 
graphical shapes is also discussed.  

   Chapter   14   : Creating GUI Applications with JavaFX.     This chapter introduces 
JavaFX, which is the next generation library for creating graphical applications in Java. 
This chapter also shows how to use Scene Builder, a free screen designer from Oracle, to 
visually design GUIs. This chapter is written in such a way that it is independent from the 
existing chapters on Swing and AWT. You can choose to skip  Chapters   11   ,    12   , and    13   , 
and go straight to  Chapter   14   , or cover all of the GUI chapters.  
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   Chapter   15   : Recursion.     This chapter presents recursion as a problem-solving 
 technique. Numerous examples of recursion are demonstrated.  

   Chapter   16   : Databases.     This chapter introduces the student to database program-
ming. The basic concepts of database management systems and SQL are f rst presented. 
Then the student learns to use JDBC to write database applications in Java. Relational 
data is covered, and numerous example programs are presented throughout the chapter.  

   Appendix   A   .     Getting Started with Alice 

  Appendixes B–M  and  Case Studies 1-5  are available on the book’s online resource page at 
 www.pearsonhighered.com/gaddis .    

  Features of the Text 

     Concept Statements     Each major section of the text starts with a concept statement. 
This statement summarizes the ideas of the section.  

  Example Programs     The text has an abundant number of complete example programs, 
each designed to highlight the topic currently being studied. In most cases, these are prac-
tical, real-world examples. Source code for these programs is provided so that students 
can run the programs themselves.  

  Program Output     After each example program there is a sample of its screen output. 
This immediately shows the student how the program should function. 

  Checkpoints 

 Checkpoints are questions placed throughout each chapter as a self-test study aid. Answers 
for all Checkpoint questions are found in Appendix L (available for download) so students 
can check how well they have learned a new topic. To download Appendix L, go to the 
 Gaddis resource page at  www.pearsonhighered.com/gaddis .      

  NOTE:     Notes appear at appropriate places throughout the text. They are short 
 explanations of interesting or often misunderstood points relevant to the topic at hand.  

  WARNING!     Warnings are notes that caution the student about certain Java features, pro-
gramming techniques, or practices that can lead to malfunctioning programs or lost data.   

  VidoeNotes.     A series of online videos, developed specif cally for this book, are available 
for viewing at  www.pearsonhighered.com/gaddis . Icons appear throughout the text alert-
ing the student to videos about specif c topics.  

  Case Studies     Case studies that simulate real-world applications appear in many chap-
ters throughout the text, with complete code provided for each. These case studies are 
designed to highlight the major topics of the chapter in which they appear.  

  Review Questions and Exercises     Each chapter presents a thorough and diverse set 
of review questions and exercises. They include Multiple Choice and True/False, Find the 
Error, Algorithm Workbench, and Short Answer.  

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis
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  Programming Challenges     Each chapter offers a pool of programming challenges 
designed to solidify students’ knowledge of topics at hand. In most cases the assignments 
present real-world problems to be solved.   

  In the Spotlight.   Many of the chapters provide an  In the Spotlight  section that presents a pro-
gramming problem, along with detailed, step-by-step analysis showing the student how to solve it.     

  Supplements 

  Companion Website 

 Many student resources are available for this book from the book’s Companion Website. 
The following items are available at  www.pearsonhighered.com/gaddis using  the Access 
Code bound into the front of the book: 

   ●   The source code for each example program in the book  
  ●   Access to the book’s companion VideoNotes  
  ●   Appendixes B–M (listed in the Table of Contents)  
  ●   A collection of f ve valuable Case Studies (listed in the Table of Contents)  
  ●   Links to download the Java™ Development Kit  
  ●   Links to download numerous programming environments, including jGRASP™, 

Eclipse™, TextPad™, NetBeans™, JCreator, and DrJava    

  Online Practice and Assessment with MyProgrammingLab 

 MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle 
with the basic concepts and paradigms of popular high-level programming languages. 

 A self-study and homework tool, a MyProgrammingLab course consists of hundreds of 
small practice problems organized around the structure of this textbook. For students, the 
system automatically detects errors in the logic and syntax of their code submissions and 
offers targeted hints that enable students to f gure out what went wrong—and why. For 
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the 
code inputted by students for review. 

 MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the 
makers of the CodeLab interactive programming exercise system. For a full demonstration, 
to see feedback from instructors and students, or to get started using MyProgrammingLab 
in your course, visit  www.myprogramminglab.com .  

  Instructor Resources 

 The following supplements are available to qualif ed instructors only. Visit the Pearson 
Education Instructor Resource Center ( www.pearsonhighered.com/irc ) for information on 
how to access them: 

   ●   Answers to all Review Questions in the text  
  ●   Solutions for all Programming Challenges in the text  
  ●   PowerPoint presentation slides for every chapter  
  ●   Computerized test bank      

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com
http://www.pearsonhighered.com/irc
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      1.1  Introduction 
 This book teaches programming using Java. Java is a powerful language that runs on prac-
tically every type of computer. It can be used to create large applications or small programs, 
known as applets, that are part of a Web site. Before plunging right into learning Java, 
however, this chapter will review the fundamentals of computer hardware and software and 
then take a broad look at computer programming in general.  

   1.2  Why Program? 

  CONCEPT:      Computers can do many different jobs because they are programmable.   

 Every profession has tools that make the job easier to do. Carpenters use hammers, saws, 
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics tech-
nicians use probes, scopes, and meters. Some tools are unique and can be categorized as 
belonging to a single profession. For example, surgeons have certain tools that are designed 
specifically for surgical operations. Those tools probably aren’t used by anyone other than 
surgeons. There are some tools, however, that are used in several professions. Screwdrivers, 
for instance, are used by mechanics, carpenters, and many others. 

 The computer is a tool used by so many professions that it cannot be easily categorized. 
It can perform so many different jobs that it is perhaps the most versatile tool ever made. 
To the accountant, computers balance books, analyze profits and losses, and prepare tax 
reports. To the factory worker, computers control manufacturing machines and track pro-
duction. To the mechanic, computers analyze the various systems in an automobile and 
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pinpoint hard-to-find problems. The computer can do such a wide variety of tasks because 
it can be  programmed . It is a machine specifically designed to follow instructions. Because 
of the computer’s programmability, it doesn’t belong to any single profession. Computers 
are designed to do whatever job their programs, or  software,  tell them to do. 

 Computer programmers do a very important job. They create software that transforms com-
puters into the specialized tools of many trades. Without programmers, the users of computers 
would have no software, and without software, computers would not be able to do anything. 

 Computer programming is both an art and a science. It is an art because every aspect of a 
program should be carefully designed. Here are a few of the things that must be designed 
for any real-world computer program: 

   ●   The logical flow of the instructions  
  ●   The mathematical procedures  
  ●   The layout of the programming statements  
  ●   The appearance of the screens  
  ●   The way information is presented to the user  
  ●   The program’s “user friendliness”  
  ●   Help systems and written documentation   

 There is also a science to programming. Because programs rarely work right the first time 
they are written, a lot of analyzing, experimenting, correcting, and redesigning is required. 
This demands patience and persistence of the programmer. Writing software demands dis-
cipline as well. Programmers must learn special languages such as Java because computers 
do not understand English or other human languages. Programming languages have strict 
rules that must be carefully followed. 

 Both the artistic and scientific nature of programming makes writing computer software 
like designing a car: Both cars and programs should be functional, efficient, powerful, easy 
to use, and pleasing to look at.  

   1.3  Computer Systems: Hardware and Software 

  CONCEPT:      All computer systems consist of similar hardware devices and software 
components.   

  Hardware 
  Hardware  refers to the physical components that a computer is made of. A computer, as 
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system 
consists of the following major components: 

   ●   The central processing unit  
  ●   Main memory  
  ●   Secondary storage devices  
  ●   Input devices  
  ●   Output devices   

 The organization of a computer system is shown in  Figure   1-1   .  
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 Let’s take a closer look at each of these devices. 

  The CPU 

 At the heart of a computer is its  central processing unit,  or  CPU . The CPU’s job is to fetch 
instructions, follow the instructions, and produce some resulting data. Internally, the central 
processing unit consists of two parts: the  control unit  and the  arithmetic and logic unit (ALU) . 
The control unit coordinates all of the computer’s operations. It is responsible for determining 
where to get the next instruction and regulating the other major components of the computer 
with control signals. The arithmetic and logic unit, as its name suggests, is designed to per-
form mathematical operations. The organization of the CPU is shown in  Figure   1-2   . 

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

 Figure 1-1   The organization of a computer system       

 Figure 1-2   The organization of the CPU       
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  A program is a sequence of instructions stored in the computer’s memory. When a computer 
is running a program, the CPU is engaged in a process known formally as the  fetch/decode/ 
execute cycle . The steps in the fetch/decode/execute cycle are as follows: 

    Fetch   The CPU’s control unit fetches, from main memory, the next instruction in the 
sequence of program instructions.  

   Decode   The instruction is encoded in the form of a number. The control unit decodes the 
instruction and generates an electronic signal.  

   Execute   The signal is routed to the appropriate component of the computer (such as the 
ALU, a disk drive, or some other device). The signal causes the component to 
perform an operation.   

 These steps are repeated as long as there are instructions to perform.  

  Main Memory 

 Commonly known as  random-access memory , or  RAM , the computer’s main memory is 
a device that holds data. Specifically, RAM holds the sequences of instructions in the pro-
grams that are running and the data those programs are using. 

 Memory is divided into sections that hold an equal amount of data. Each section is made of 
eight “switches” that may be either on or off. A switch in the on position usually represents 
the number 1, although a switch in the off position usually represents the number 0. The 
computer stores data by setting the switches in a memory location to a pattern that repre-
sents a character or a number. Each of these switches is known as a  bit , which stands for 
 binary digit . Each section of memory, which is a collection of eight bits, is known as a  byte . 
Each byte is assigned a unique number known as an  address . The addresses are ordered 
from lowest to highest. A byte is identified by its address in much the same way a post office 
box is identified by an address.  Figure   1-3    shows a series of bytes with their addresses. In 
the illustration, sample data is stored in memory. The number 149 is stored in the byte at 
address 16, and the number 72 is stored in the byte at address 23. 

 RAM is usually a volatile type of memory, used only for temporary storage. When the 
computer is turned off, the contents of RAM are erased.   

 Figure 1-3   Memory bytes and their addresses       

  Secondary Storage 

 Secondary storage is a type of memory that can hold data for long periods of time—even 
when there is no power to the computer. Programs are normally stored in secondary mem-
ory and loaded into main memory as needed. Important data, such as word processing 
documents, payroll data, and inventory figures, is saved to secondary storage as well. 

 The most common type of secondary storage device is the  disk drive . A traditional disk 
drive stores data by magnetically encoding it onto a spinning circular disk.  Solid-state drives , 
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which store data in solid-state memory, are increasingly becoming popular. A solid-state 
drive has no moving parts and operates faster than a traditional disk drive. Most computers 
have some sort of secondary storage device, either a traditional disk drive or a solid-state 
drive, mounted inside their case. External drives are also available that connect to one of 
the computer’s communication ports. External drives can be used to create backup copies of 
important data or to move data to another computer. 

 In addition to external drives, many types of devices have been created for copying data 
and for moving it to other computers.  Universal Serial Bus drives , or  USB drives,  are small 
devices that plug into the computer’s USB port and appear to the system as a disk drive. 
These drives do not actually contain a disk, however. They store data in a special type of 
memory known as  flash memory.  USB drives are inexpensive, reliable, and small enough to 
be carried in your pocket. 

 Optical devices such as the  CD  (compact disc) and the  DVD  (digital versatile disc) are 
also popular for data storage. Data is not recorded magnetically on an optical disc, but is 
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the 
pits and thus read the encoded data. Optical discs hold large amounts of data, and because 
recordable CD and DVD drives are now commonplace, they make a good medium for 
creating backup copies of data.  

  Input Devices 

 Input is any data the computer collects from the outside world. The device that collects the 
data and sends it to the computer is called an  input device . Common input devices are the 
keyboard, mouse, scanner, microphone, Webcam, and digital camera. Disk drives, optical 
drives, and USB drives can also be considered input devices because programs and data are 
retrieved from them and loaded into the computer’s memory.  

  Output Devices 

 Output is any data the computer sends to the outside world. It might be a sales report, a 
list of names, or a graphic image. The data is sent to an output device, which formats and 
presents it. Common output devices are monitors and printers. Disk drives, USB drives, and 
CD/DVD recorders can also be considered output devices because the CPU sends data to 
them in order to be saved.   

  Software 
 As previously mentioned, software refers to the programs that run on a computer. There are 
two general categories of software: operating systems and application software. An  operat-
ing system  is a set of programs that manages the computer’s hardware devices and controls 
their processes. Most all modern operating systems are multitasking, which means they are 
capable of running multiple programs at once. Through a technique called  time sharing,  a 
multitasking system divides the allocation of hardware resources and the attention of the 
CPU among all the executing programs. UNIX, Linux, and modern versions of Windows 
and Mac OS are multitasking operating systems. 

  Application software  refers to programs that make the computer useful to the user. These pro-
grams solve specific problems or perform general operations that satisfy the needs of the user. 
Word processing, spreadsheet, and database programs are all examples of application software. 
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  Checkpoint 

  1.1    Why is the computer used by so many different people, in so many different 
 professions?   

  1.2    List the five major hardware components of a computer system.   

  1.3    Internally, the CPU consists of what two units?   

  1.4    Describe the steps in the fetch/decode/execute cycle.   

  1.5    What is a memory address? What is its purpose?   

  1.6    Explain why computers have both main memory and secondary storage.   

  1.7    What does the term “multitasking” mean?      

   1.4  Programming Languages 

  CONCEPT:      A program is a set of instructions a computer follows in order to perform 
a task. A programming language is a special language used to write 
computer programs.   

  What Is a Program? 
 Computers are designed to follow instructions. A computer program is a set of instructions 
that enable the computer to solve a problem or perform a task. For example, suppose we 
want the computer to calculate someone’s gross pay. The following is a list of things the 
computer should do to perform this task. 

    1.   Display a message on the screen: “How many hours did you work?”  
   2.   Allow the user to enter the number of hours worked.  
   3.   Once the user enters a number, store it in memory.  
   4.   Display a message on the screen: “How much do you get paid per hour?”  
   5.   Allow the user to enter an hourly pay rate.  
   6.   Once the user enters a number, store it in memory.  
   7.   Once both the number of hours worked and the hourly pay rate are entered, multiply 

the two numbers and store the result in memory.  
   8.   Display a message on the screen that shows the amount of money earned. The mes-

sage must include the result of the calculation performed in Step 7.   

 Collectively, these instructions are called an  algorithm . An algorithm is a set of well-defined 
steps for performing a task or solving a problem. Notice that these steps are sequentially 
ordered. Step 1 should be performed before Step 2, and so forth. It is important that these 
instructions be performed in their proper sequence. 

 Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process 
instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s 
and 0s). The binary numbers form machine language instructions, which the CPU interprets 
as commands. Here is an example of what a machine language instruction might look like: 

  1011010000000101  
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 As you can imagine, the process of encoding an algorithm in machine language is very 
tedious and difficult. In addition, each different type of CPU has its own machine language. 
If you wrote a machine language program for computer A and then wanted to run it on 
computer B, which has a different type of CPU, you would have to rewrite the program in 
computer B’s machine language. 

 Programming languages, which use words instead of numbers, were invented to ease the 
task of programming. A program can be written in a programming language, which is much 
easier to understand than machine language, and then translated into machine language. 
Programmers use software to perform this translation. Many programming languages have 
been created.  Table   1-1    lists a few of the well-known ones. 

  Table 1-1   Programming languages 

 Language  Description 

 BASIC  Beginners All-purpose Symbolic Instruction Code is a general-purpose, proce-
dural programming language. It was originally designed to be simple enough 
for beginners to learn. 

 FORTRAN  FORmula TRANslator is a procedural language designed for programming 
complex mathematical algorithms. 

 COBOL  Common Business-Oriented Language is a procedural language designed for 
business applications. 

 Pascal  Pascal is a structured, general-purpose, procedural language designed primarily 
for teaching programming. 

 C  C is a structured, general-purpose, procedural language developed at Bell 
Laboratories. 

 C++  Based on the C language, C++ offers object-oriented features not found in C. 
C++ was also invented at Bell Laboratories. 

 C#  Pronounced “C sharp.” It is a language invented by Microsoft for developing 
applications based on the Microsoft .NET platform. 

 Java  Java is an object-oriented language invented at Sun Microsystems and is now 
owned by Oracle. It may be used to develop stand-alone applications that operate 
on a single computer, applications that run over the Internet from a Web server, and 
applets that run in a Web browser. 

 JavaScript  JavaScript is a programming language that can be used in a Web site to perform 
simple operations. Despite its name, JavaScript is not related to Java. 

 Perl  A general-purpose programming language that is widely used on Internet servers. 

 PHP  A programming language used primarily for developing Web server applications 
and dynamic Web pages. 

 Python  Python is an object-oriented programming language that is used in both business 
and academia. Many popular Web sites have features that are developed in Python. 

 Ruby  Ruby is a simple but powerful object-oriented programming language. It can be used 
for a variety of purposes, from small utility programs to large Web applications. 

 Visual Basic  Visual Basic is a Microsoft programming language and software development envi-
ronment that allows programmers to create Windows-based applications quickly. 
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  A History of Java 
 In 1991 a team was formed at Sun Microsystems (a company that is now owned by Oracle) 
to speculate about the important technological trends that might emerge in the near future. 
The team, which was named the Green Team, concluded that computers would merge 
with consumer appliances. Their first project was to develop a handheld device named *7 
(pronounced “star seven”) that could be used to control a variety of home entertainment 
devices. In order for the unit to work, it had to use a programming language that could be 
processed by all the devices it controlled. This presented a problem because different brands 
of consumer devices use different processors, each with its own machine language. 

 Because no such universal language existed, James Gosling, the team’s lead engineer, created 
one. Programs written in this language, which was originally named Oak, were not trans-
lated into the machine language of a specific processor, but were translated into an interme-
diate language known as  byte code . Another program would then translate the byte code 
into machine language that could be executed by the processor in a specific consumer device. 

 Unfortunately, the technology developed by the Green Team was ahead of its time. No 
customers could be found, mostly because the computer-controlled consumer appliance 
industry was just beginning. But rather than abandoning their hard work and moving on 
to other projects, the team saw another opportunity: the Internet. The Internet is a perfect 
environment for a universal programming language such as Oak. It consists of numerous 
different computer platforms connected together in a single network. 

 To demonstrate the effectiveness of their language, which was renamed Java, the team used 
it to develop a Web browser. The browser, named HotJava, was able to download and run 
small Java programs known as applets. This gave the browser the capability to display 
animation and interact with the user. HotJava was demonstrated at the 1995 SunWorld 
conference before a wowed audience. Later the announcement was made that Netscape 
would incorporate Java technology into its Navigator browser. Other Internet companies 
rapidly followed, increasing the acceptance and the influence of the Java language. Today, 
Java is very popular for developing not only applets for the Internet, but also stand-alone 
applications.  

  Java Applications and Applets 
 There are two types of programs that may be created with Java: applications and applets. 
An application is a stand-alone program that runs on your computer. You have probably 
used several applications already, such as word processors, spreadsheets, database manag-
ers, and graphics programs. Although Java may be used to write these types of applications, 
other languages such as C, C++, and Visual Basic are also used. 

 In the previous section you learned that Java may also be used to create applets. The term 
 applet  refers to a small application, in the same way that the term  piglet  refers to a small 
pig. Unlike applications, an applet is designed to be transmitted over the Internet from a 
Web server, and then executed in a Web browser. Applets are important because they can 
be used to extend the capabilities of a Web page significantly. 

 Web pages are normally written in hypertext markup language (HTML). HTML is limited, 
however, because it merely describes the content and layout of a Web page. HTML does 
not have sophisticated abilities such as performing math calculations and interacting with 
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the user. A Web designer can write a Java applet to perform operations that are normally 
performed by an application and embed it in a Web site. When someone visits the Web site, 
the applet is downloaded to the visitor’s browser and executed. 

  Security 

 Any time content is downloaded from a Web server to a visitor’s computer, security is 
an important concern. Because Java is a full-featured programming language, at first you 
might be suspicious of any Web site that transmits an applet to your computer. After all, 
couldn’t a Java applet do harmful things, such as deleting the contents of the disk drive or 
transmitting private information to another computer? Fortunately, the answer is no. Web 
browsers run Java applets in a secure environment within your computer’s memory and do 
not allow them to access resources, such as a disk drive, that are outside that environment.    

   1.5  What Is a Program Made of? 

  CONCEPT:      There are certain elements that are common to all programming 
languages.   

  Language Elements 
 All programming languages have some things in common.  Table   1-2    lists the common ele-
ments you will find in almost every language. 

  Table 1-2   The common elements of a programming language  

 Language Element  Description 

 Key Words  These are words that have a special meaning in the programming lan-
guage. They may be used for their intended purpose only. Key words 
are also known as  reserved words . 

 Operators  Operators are symbols or words that perform operations on one or more 
operands. An  operand  is usually an item of data, such as a number. 

 Punctuation  Most programming languages require the use of punctuation char-
acters. These characters serve specific purposes, such as marking the 
beginning or ending of a statement, or separating items in a list. 

 Programmer-Defined 
Names 

 Unlike key words, which are part of the programming language, these 
are words or names that are defined by the programmer. They are used 
to identify storage locations in memory and parts of the program that 
are created by the programmer. Programmer-defined names are often 
called  identifiers . 

 Syntax  These are rules that must be followed when writing a program. Syntax 
dictates how key words and operators may be used, and where punc-
tuation symbols must appear. 

 Let’s look at an example Java program and identify an instance of each of these elements. 
 Code Listing   1-1    shows the code listing with each line numbered.   




